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Introduction 
The realization of a complex software controller component can be speed up 
significantly by applying Model Driven Engineering (MDE). Many institutes have 
recognized the benefits of MDE and consequently launched tools that can be very 
helpful for deriving design documentation from a model, generating source code, 
verifying model properties, and/or generating test cases. Selecting a suitable tool for 
prolonged usage requires a thorough evaluation about featuring, costs, support, training, 
intuitive usage, etc. Most of these characteristics are important for an engineer to 
shorten the learning curve and to increase productivity. This paper addresses modeling 
tools that include verification of state machines since this key feature accounts for a 
productivity boost. Almost all such verifying tools provide formal verification based on a 
formal language such as CSP [1], SDL [2], or LOTOS [3]. However, applying these tools 
can hamper the productivity of a software developer who is only familiar with common 
design techniques and programming languages. For this reason we propose an 
alternative approach based on exhaustive runtime verification which closely relates to a 
developer's knowledge and experience. The tool TismTool [4] supports this new 
approach. 
The setup of this paper is as follows. Firstly, the rationale for using a verifying tool is 
given. Then, the 2 considered techniques of formal verification and runtime verification 
are characterized. Finally, the differences between the techniques are discussed. 
 

Tool rationale 
The suitability of a verifying tool depends on the application domain to be modeled. A 
model with a simple state machine for a door with 2 states (open and closed) hardly 
needs tool support. Application source code generated from a model relieves a 
developer from some burden, but this profit can be nullified by the additional effort to 
glue that code in the rest of the software system. The door model becomes more 
interesting if asynchronous activities happen when receiving events from door sensors. 
Stimuli from both a client and lower level components may cause race conditions which 
have to be solved carefully. But, the investment in a verifying tool should still be 
questioned for occasionally modeling a simple controller. 
Without any doubt a verifying tool is valuable for modeling complex controllers. The 
MediaPlayer, elaborated in the Appendix, is a typical example of such a controller based 
on practical experience. It has dozens of (hierarchical and orthogonal) states, many 
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asynchronous and/or autonomous events, multiple subcomponents and a thread. The 
correctness of such a controller with several (sub)components in a multi-threaded 
environment is hard to prove without tool support. Verifying this complex controller 
demands a tool with the ability of executing an aggregated verification session 
encompassing multiple components and multiple threads. 
The choice of a suitable tool should be made after mature consideration since it 
concerns a long term investment. The existing technique of formal verification will be 
examined thanks to its years of merit. Furthermore, a novel technique relying on 
exhaustive runtime verification will be investigated. One of the few tools supporting this 
approach can be found at [4]. 
 

Formal verification 
A generic toolchain for model verification is shown in Figure 1. 
 

 
Figure 1 Toolchain template 

The ModelEditor facilitates the construction of a model based on the input requirements; 
this program can be a graphical editor (e.g. [5]), or a tabular editor (e.g. [6]), or even an 
ASCII editor. The ModelTranslator generates verification source code from the model; it 
also generates source code for application purpose in one or more (programming) 
languages. The VerificationEngine performs the verification and reports its findings. This 
program acts as an interpreter, or occasionally it must be compiled and linked first (e.g. 
SPIN [7]). 
Currently there are already dozens of suppliers offering toolchains for formal verification 
[8], both commercially as well as in the open source domain. Of course there is a strong 
relationship between the format of the model and the verification source code on the one 
side and the individual tools of a chain on the other side. Despite the variation in formats 
and tools the following general observations can be made about the formal verification 
technique. 
1. The model is described by one of the (many) formal languages. Some of these 
languages have been officially standardized, such as SDL [2], or LOTOS [3]. CSP [1] is a 
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well-known example serving as de facto standard arising from the academic world, but 
also adopted for commercial purposes. It has been extended in the past 30 years 
leading to many variations. Promela [7] is a proprietary language for the popular SPIN 
toolchain. 
2. The mentioned formal languages have been successfully applied for algorithm 
proving. Some of them originate from the data communication world for verifying 
protocols. 
3. For observing real-time behavior some of the formal languages incorporate the notion 
of time. (Timing aspects will not be considered in this paper.) 
4. The verification takes into account not only states of the state machines but also 
values of variables. These variables are restricted to discrete types: integers (with a 
finite range), booleans, or enumerations. 
5. The so called state space explosion is caused by the orthogonality of state machines 
and the usage of (many) integer variables with big ranges. 
6. The syntax of formal languages has limitations, such as absence of floating/double 
variables. Also, library functions of the target programming language cannot be called in 
a formal model. 
7. Syntax statements that are not supported by the formal language must be realized via 
foreign components. In such a way a distinction can be made between control 
processing by the model and data processing by foreign components. 
8. The model to be verified can be categorized as a Platform Independent Model (PIM). 
The generated verification source code is only intended for verification purpose. The 
ModelTranslator can generate application source code for the supported programming 
languages. Many tools in the academic world support only a single application language, 
and some of them even none if the intention is only algorithm proving. The big 
advantage of PIM is that the verification engine can be optimized for its dedicated 
purpose. 
9. The ModelTranslator is assumed to generate correct application source code; a 
successful verification can’t give any guarantees since it acts on differing (verification) 
code. Also, deploying the application source code correctly is not enforced by the 
verification step. 
We will go deeper into some of the above observations. Comparing two floating 
variables must be done in a foreign component. And at some toolchains a foreign 
component is even needed for comparing 2 integer variables. Not surprisingly the 
imposed drop of productivity might keep a software developer away from applying formal 
verification. Furthermore, the usage of foreign components may introduce side-effects, 
as is illustrated in Figure 2. 
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Figure 2 Fragment of foreign component usage 

 
Calling Fc->IsGreater(a,b) at the foreign component Fc is always followed by branching 
into two states due to the 2 possible boolean results. So, the formal verification has to 
deal with states L3 and R2, and their sequel. This simplified example shows that these 
states will never be visited in the actual application. The point is that utility functions of a 
foreign component have no state behavior, so that correlation between related calls is 
lost. Of course the problems in this artificial example could be prevented by removing 
the second comparison, but that might not be a solution for more complex situations. 
 

Exhaustive runtime verification 
According to reference [9] the term Runtime verification refers to “any mechanism for 
monitoring an executing system”. We consider this definition also to be valid for a certain 
part of a system of our interest. Nevertheless, the corollary in the reference can be 
argued concerning: “Runtime verification avoids the complexity of traditional formal 
verification techniques … by analyzing only one or a few execution traces and …”. The 
dispute concerns the fact that our approach entails an exhaustive execution of all traces 
for the verified system. 
The analogy with the toolchain sketched in Figure 1 will be drawn for the tool TismTool 
[4] in Figure 3. 
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Figure 3 Toolchain of TismTool 

 
The UML format [10] has been chosen for model construction because of its widespread 
usage. Software developers are familiar with this notation, and the diagrams always 
serve as documentation. Since the target programming language (C, C++, C#, or Java) 
is known upfront, code snippets in the chosen programming language can be included in 
the model. The UML model must be saved in the standardized XMI format [11]. TismTool 
reads the XMI file and generates source code in the target language for verification of 
the interface protocols and verification of the specified architecture(s). Also source code 
can be generated for the final application. The verification code is almost the same as 
the application code: some additional verification code administers the visiting of states 
and transitions. The generated (and optionally foreign) source code must be compiled 
for the target platform and linked with a Runtime Environment (RTE). Two types of 
RTE's exist, namely one for the normal application and one for verification purpose. The 
latter includes a supervisor with the verification engine. Implementation of such an 
engine for each programming language can be considered as a major disadvantage of 
this approach. However, reuse of the verification algorithm reduces the implementation 
effort. And, since the RTE’s have already been implemented for the 4 mentioned 
programming languages no additional effort is needed by a user of the tool. 
The source code of the verification engine is freely available because a developer must 
be able to compile it for the specific target platform. The resulting verification executable 
runs on the target platform. This explains the term runtime verification since the 
instrumented application source code is verified within application circumstances. 
The verification engine performs an exhaustive search of all possible execution 
scenarios. This distinguishes our approach from other Runtime verification methods that 
are based on a selected set of test cases. During the verification all scenarios are 
remembered, and also all (intermediate) state configurations must be stored. The 
involved memory resources might be a bottleneck on the target system, especially for 
small embedded systems. The processing power of the target system might be another 
limiting factor. If resources on a target host are insufficient for verification, then one can 
resort to another host system provided that no target specific system calls are made. 
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The reported model defects deal with the following properties: 
• Deadlock 
• Livelock 
• Unhandled function 
• Rendez-vous error 
• Queue overflow 
• Unvisited state 
• Unvisited transition 

Most of these behavioral properties correspond to those checked by formal verification 
methods. The verification output optionally includes a log file from which TismTool can 
construct sequence diagrams. These diagrams aid in understanding and solving 
possible defects. 
 

Discussion 
Formal verification tools distinguish from other verification tools by the ability of 
performing an exhaustive search among all possible scenarios. In particular runtime 
verification tools are known for processing only a limited set of scenarios. However, the 
toolchain of TismTool is able to master an exhaustive search of runtime scenarios on the 
target platform. Comparing both techniques is meaningful now since this hurdle has 
been taken. The verified properties are similar for both techniques emphasizing on 
deadlock detection and livelock detection. 
Some formal verification engines incorporate integer variables with a restricted range in 
their verification state administration. TismTool handles purely states in its 
administration; variables can be taken into account for verification by simply modeling 
them in a state machine, which will be part of the verified architecture. 
The application domain of formal verification is focused on data communication 
protocols and mathematical algorithms. Most formal verification tools originate from 
academic institutes interested in theoretical problems. On the other hand TismTool is 
suited for much wider application domains including complex software controllers. 
TismTool has been developed based on a solid practical experience from industry. The 
UML notation is applied for modeling because of its widespread usage among software 
developers. Finite state machines should be modeled in a graphical language for decent 
maintenance and reviewing by colleagues. Anyway, the UML diagrams will automatically 
serve as design documentation. 
The main distinction between the two verification techniques is the fact that a runtime 
verification session is executed on the target machine. The differences between 
verification source code and application source code are minimal in case of runtime 
verification. The immediate feedback from execution of the generated verification source 
code creates confidence in the generated application code. The relationship between 
the formally verified model and the corresponding application code is less tight because 
completely different tools are involved.  
Runtime verification allows a developer to add source code to the model in the target 
programming language without any restrictions. This powerful feature means ease of 
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use accounting for a large increase in productivity. The developer does not need to 
design artificial foreign components. As mentioned earlier foreign components included 
in a formal model may cause models with states and transitions that will never be visited 
in the actual application. The formal verification will not notice such unvisited elements; 
on the other hand TismTool keeps track of (un)visited states and transitions during its 
exhaustive verification. In fact this tool can be used as a facility for analyzing a model, 
since the designer is able to manipulate input stimuli for the model. 
The compared items above lead to the conclusion that exhaustive runtime verification 
with TismTool prevails over formal verification techniques. 
 

Appendix: Complex software controller 
A complex software controller is a component controlled by a client component and 
controlling several lower-level components. The architecture of a complex controller is 
illustrated by an example of the MediaPlayer [12]; refer to Figure 4 for its context 
diagram. For gaining a better understanding of the involved complexity this controller is 
described in more detail. 

 
Figure 4 MediaPlayer context 

The Titlebase component contains title information, especially the sector number at the 
beginning of the title, and sector numbers in the middle of the title needed for recovery 
after an error. The Reader component handles reading of the media data; for reasons of 
simplicity a single range suffices for reading (the remaining part of) the title. The Display 
component takes care of the presentation of the media data. In order to limit the 
example only the play modes normal play and pause are modeled. Errors can occur in 
reading data from the medium, and in decoding data due to authoring failures. The 
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MediaPlayer is able to recover from such errors. This functionality complicates the 
internal state machine to a big extent. Playback aborts in case of too many consecutive 
errors. The MediaPlayer executes in its own thread so that it is decoupled from 
hardware related activities and from the user interface. As a consequence the function 
calls and callbacks have to be marshaled into messages, which will be stored in the 
thread's queue. 
The communication link between a pair of interacting components is considered as a 
protocol with one component having a server role and the other one having a client role. 
The client does synchronous function calls to the server, and the server invokes 
asynchronous callbacks to the client. The access to a server as well as to a client is 
shielded by a port. At each port a Protocol State Machine (PSM) describes the state 
behavior. Modeling a state machine at the client role is needed for verification purposes, 
and furthermore it helps the developer to resolve race conditions at the implementation 
of the client component. 
The MediaPlayer is decomposed in several subcomponents: a Backend for the main 
activity and subcomponents acting as proxies for the controlled components. All 
subcomponents will have an internal design state machine. A callback to a 
subcomponent will be marshaled to a message that is queued in an internal message 
queue. The run-to-completion mechanism inside the thread is realized by servicing all 
messages inside the internal queue before accessing the external queue. A 
subcomponent's call to another subcomponent is executed immediately without 
marshaling or queuing. So, such a call executes differently compared with the 
marshaled call to the threaded component. 
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